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Faraday Rotation of microwaves i n  a magnetized plasma has 

h?en observed w i n g  a microwave cav i ty  technique. The positive 

coluara of a gaseous discharge w a s  placed c o a x i a l l y  within a cylin- 

drical cavi ty ,  wi th  a mawetic f i e l d  akpl%d along th i s  same axis. 

The cavi ty  w a s  exci ted i n  the angularly dependent 'SElll mode, 

which is doubly degenerate, a t  a frequency in the rreigtibwrhood of 

2000 MC. 

modes and an orthogonal output antenna coupled t o  the other. 

Theory shows that the power coupled t o  the  output  is proportional 

t o  the  absolute  square of the off-diagonal element of the con- 

duct iv i ty  t-mf of the anisotropic plasma. 

output power as a funct ion of magnetic f i e l d  which is strongly 

dependent on co l l i s ion  frequency and also dependent on e lec t ron  

dens i ty .  

An input antenna was coupled t o  one of the  degenerate 

This  gives a curve of 

The cavi ty  was tuned up so that for zero magnetic f i e l d ,  

there w a s  no power transmitted t o  the  output. 

t h i s  n u l l  wer8 recorded as the  mametic f i e l d  was swept from zero 

to its maximum value, t h e  simal frequency being kept mnstan t .  

The recorded power coupled t o  t h e  output gave resonance curves in 

agreement with t h e  theore t ica l  predictions.  

Deviations from 

V 
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BIMC'DAL-CAVITY ME.43UREMENT CF "HE YICRCWAVE FARADAY 

EFFECT IN A GkSECUS AIAGNETC'PLASMA 
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In  1845, Faraday discovered tbat when a beam of l i nea r ly  

polarized l i g h t  was passed through a transparent medium immersed 

an anzle which w a s  d i r e c t l y  proportional t o  the  s t rength of t he  f i e l d  

and the  length of t he  medium traversed.' This  is known as the  Faraday 

E f f e c t ,  and the angle of ro ta t ion  is u s u a l l y  wri t ten as 8 = V Bo L, 

where v is t h e  Verdet c o n s t a n t  of t he  medium, B t h e  magnetic in- 

ductiou, and L t h e  length of t he  medium. 

0 

This  e f f ec t  was explained 

much later i n  terms of t h e  Fresnel decomposition of a l i n e a r  wave 

into two oppositely ro t a t ing  c i r c u l a r l y  polarized waves. 

In recent years, there  has been a great dea l  of interest i n  

t h e  Faraday Effect fo r  microwaves i n  f e r r i t e ~ ~ ' ~  and f o r  gaseous 

plasmas. 2-5 

5. A. Jenkins and H. E. White, Fundamentals of Cmtics, (McGraw- 

'I€. Suhl and L. R. Walker, Bell Telephone Laboratory Monograph 

3L. Goldstein, Id. Gilden, and J. E t t e r ,  IRE Convention Record, 

4L. Goldstein, Advances i n  Electronics  and Electron Physics, 

5J. E. Etter and L. Goldstein,  U. of I l l i n o i s  E. E. R e s .  Tech. 

H i l l  Book Coo, Inc., N e w  York, 1957). p. 596 

No. 2322, 1954. 

Part 10, p. 58, 1953. 

Ed. L. Marton, (Academic Press, New York), V o l .  VII. p. 483, 1955. 

Rept. NO. 3, Contract NO. AF 19<604)-525, p. 42, 1954. (ASTIA NO. 
AD 53596). 
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In  f e r r i t e s - i t  is a magnetic e f f e c t  i n  that t h e  electron sp ins  give 

rise t o  a pe rmeab i l i t y  tensor, while in plasmas It is an e l e c t r i c  

effect s ince  t h e  medium is characterized by a tensor dielectric 

coefficient. In t h i s  work, we shall be in te res ted  only i n  t h e  latter 

case . 
Propagation of guided microwaves through plasmas i n  a magnetic 

f ie ld  was first reported by Goldstein, lsmpert, and Reney' in 1951. 

They observed l a rge  Faraday Rotations, and, i n  addi t ion a resonance 

effect where t h e  cyclotron frequency of the  e lec t rons  equals the 

microwave signal frequency , polarization transformat&cns, and non- 

rec iproc i ty  of propagation. The explanation of the  effect i n  plasmas 

is that the applied static magnetic f i e l d  renders the m e d i u m  aniso- 

t rop ic ,  so that the  plasma I s  characterized by a dielectric coeff l -  

c i en t  In t h e  form of a tensor. The der ivat ion using Maxwel l ' s  

equation and t h e  equation of motion of the  e lec t rons  i n  the  plasma 

is given by Glnzburg.' When the  static magnetic f i e l d  B is taken 

along the Z-direction, t he  dielectric tensor is: 

0 

%. Goldstein, M. Lampert, and J. Heney, Phys. Rev. 81 

'V. L. Ginzburg, Propagation of Electromagnetic Waves i n  Plasma, 

956, -* 
(1951) . 
(Gordon and Breach Science P u b l i s h e r s ,  Inc., New Ycrk, 1961) p. 158. 
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and 

,L,= E" [I - 
t 

In the expressions above, G, Is the microwave eigne1 frocat-noy.3 iq 

the effective collision frequency for the e1ectrons.d is  the 

angular p~aeaa frequency, given by \ 

9 

i 5  j 



5 
andb+,is the electron cyclotron f-cy given by 

H e r e  

N = electron density of  the p l a m  

e = electron charge 

M = electron mas8 

eo= permit t ivi ty  of f r ee  space 

This  teasor is t he  s t a r t i n g  point f o r  discussions of Faraday 

Rotation. 

s ider ing the case of uniform plane  waves propagating in an M- 

bounded medium. E t t e r  and Goldstein give a good general discussion, 

the results of which are outl ined below:  

A basic understanding of the  e f f e c t  is afforded by con- 

8 

iwc- Y €  
Aesming plane 8 0 8  solut ions of t h e  form e t o  Yaxwell*s 

equations, one obtain8 f o r  t h e  propagation constant 

where $'= dt ;/ ~ a( being t he  at tenuat ion constant andp t h e  

phase canetant./((Bis t he  permeability of f r e e  space, and %and c)l 
are components 

a re la t ionship  

of t he  d i e l e c t r i c  tensor given above. One also obtains  

between the  f i e l d  components of 

which correspond t o  oppositely ro t a t ing  circular waves, t h e  (+) 

r e fe r r ing  t o  one of the waves and t h e  (-1 t o  t he  other.  

J. E, E t t e r  and L. Goldstein, U. of I l l i n o i s  E, E. R e s .  Lab. 8 

Tech. Rept. No. 3, 1954. 
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. .  If the t w o  waves are exci ted with equal amplitudes, t h e  r e s u l t  i s  a 

plane polarized wave at the transmitter. If is negl ig ib le ,  t he  

r e s u l t i n g  wave after t raversing a dis tance  L is also plane polarized 

but wlth its plane of polar izat ion rotated through an angle  8 given 

wherep*are the two phase canstants. If one assmes small f i e lds  

and small electron dens i t i e s ,  and compares t h i s  expression t o  the 

classical one of = V €3 L,  the  Verdet constant of t he  plasma is 
0 

Therefore, i n  tbis l imi t ,  ro ta t ion  is d i r e c t l y  proportional to  magnetic 

f ield.  If,  however, the f i e ld  is not restricted to small values  and 

the e lec t ron  cyclotron frequencyuc i s  alloyed to reach the value of 

&# , a resonance occurs i n  t h e  expression for 0 above. While for 

o p t i c a l  frequencies such a condition is not a t t a inab le ,  a f i e l d  of 

0.1 makeswc= 2800 Mc. Typ3cal ro t a t ion  curves showing 

anomalous behavior at cyclotron resonance (w 5%) are given by 

8 ,  10 Goldstein, et ai. 

In  t h e  above work and i n  p rac t i ca l ly  a l l  work on Faraday 

Rotation up  to  the present ,  the propagation method has been used. 

’I,. Goldstein, Id. Gilden, and J. B t t e r ,  IRE Conwention Record, 
Part 10, p. 62, 1953. 

‘OX. Rae and L. Goldstein, U. of I l l i n o i s  E.E. R e s .  Sei. Rept. 
No. 3, Contract No. AF 19<604)-3481, p. 26, 58,  1962. 
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A t y p i c a l  experiment 11*12 cons is t s  i n  propagating microwaves through a 

wave guide in which a discharge tube has been placed, 

t h e  microwave c i r c u i t  is placed on t h e  axis of a solenoid, and the  

a c t u a l  angle  of rotation, as well as polar izat ion transformations, 

are measured as a function of magnetic f i e ld .  

of a l inea r  light wave, i n  t h i s  case t h e  TE mode i n  a circular 

wave guide, is used, A c t u a l l y ,  i n  t h e  presence of a magnetized 

plasma, one no longer has a pure TE wave, but i n  t h e  l i m i t  as t h e  

This  sect ion of 

The microwave analog 

11 

11 

magnetic f i e l d  goes to  zero, it reduces to a pure mode. l3 I t  is 

i n t e r e s t i n g  t o  note  t h a t  when t h e  r a d i a l  dimension of t he  plasma 

is small compared to  that of the wave guide, t h e  TEll wave is 

essen t i a l ly  plane polarized 3n t h e  plasma, and the  above discussion 

of plane waves is a good approximation. 14 

"K, Rao and L. Goldstein, U. of I l l i n o i s  E. E. R e s .  Sci. Rept. 
No. 3, Contract  No. AF 19(604)-3481, p. 39, 1902. 

12J. E, E t t e r  and L. Goldstein, U. of I l l i n o i s  E.E. R e s .  Tech. 
Rept, No. 3, Contract No. AF 19<604)-525, p.42, 1954. (ASIA No.  
AD 53596. 

I3H. Suhl and L, R. Walker ,  B e l l  Telephone Monograph No. 2322, 
1954. 

I4K. Rao and L. Goldstein, U. of I l l i n o i s  E.E. R e s .  Sc i ,  Rept. 
No. 3, Contract No. AF 19(604)~3481, p. 128, 1962. 
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In  another - A c e t  of plasma research there  has been considerable . .  

U s e  of resonant microwave cav i t i e s  t o  study basic plasma proper t ies  

auch as electron densi t ies .  Is-'' These experiments u t i l i z e  t h e  f a c t  

t h a t  when a plasma is introduced i n t o  t h e  cavi ty ,  t h e  resonant frequency 

of a given d e  s h i f t s  by a calculable amount. 

Brown'' have worked out t h e  frequency s h i f t s  f o r  several lower order 

cy l ind r i ca l  cav i ty  modes when a coaxial ylasma-cavity system I s  

placed i n  a magnetic f i e ld .  

as t h e  TE 

t h e  two degenerate modes underso d i f f e ren t  frequency s h i f t s .  

Buchsbaum, Mower,  and 

In t h e  case of degenerate modes, such 

t h e  f i e l d  has  t h e  e f f e c t  of removing the  degeneracy; Imn ' 

Cne may combine t h e  t w o  areas of plasma inves t iga t ions  d is -  

cussed above, and u s e  microwave cavi ty  techniques to s t u d y  t he  Fara- 

day Effect .  

and Teaney," who used a bimodal cav i ty  t o  s tudy electron spin 

resonance i n  paramagnetic materials. In t h e  present work, t h e  

bimodal c a v i t y  has been used to  s tudy  t h e  Faraday Effect  i n  a 

magnetized plasma. 

coaxial  plasma-cavity s y s t e m  used, both theo re t i ca l ly  and experi- 

mentally.  

This has been done i n  the case of f e r r i t e s  by mitis 

W e  w i l l  describe herein t h e  cylindrical ,  

I5D. J. Rose and So C. Brown, J. A p p l .  Phys. 23, 1026, (1952). 

"h4. A. Biondi, R e v .  Sei. Ins t .  - 22, 500, (1950). 

"90 J. Buchsbaum, L. Mower ,  and S. C. Brown, Phys. F lu ids  3, 1 
( 1960). 

"A. p o r t i s  and Do Teaney, J. Appl. Phys. 29, 1692 (1958). 
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When t h e  empty cavity is excited in the  TElll mode, there exist  two 

independent, orthogonal modes which may be resonant at the same 

frequency. 

r e s u l t s  in  removal of the degeneracy and the introductibn of coupling 

between the two otherwise independent modes. Faraday Rotation in 

t h i s  bimodal system is  observed as a change i n  the coupling of the 

two males. 

A magnetoplasma I s  then introduced i n  the cavity which 



XI. THE BIMCDAL CAVITY CCNTAINING 

A WNPLEX MZDIUM 

The theory oA resonant cav i t i e s  is w e l l  developed and has been 

In 1950, Slater2' published a complete known for a number of years. 

account of t h e  basic theory of t h e  general resonant cavity. The 

approach i s  es sen t i a l ly  t h e  following: A s  is t r u e  of any vector 

f i e l d ,  t h e  vector f i e l d  i n  the cavi ty  may be broken up i n t o  two  

f i e l d s ,  one being solenoidal  (zero divergcnce), and the  other 

i r r o t a t i o n a l  (zero curl). The cavi ty  f i e lds  may be expanded i n  

terms of the normal modes of the cavity, which are orthogonal and 

may also be su i t ab ly  normalized. The solenoidal  f i e l d s  are 

orthogonal t o  the I r r o t a t i o n a l  ones. The current  density may a l s o  

be expand i n  terms of these  orthogonal functions, i n  a similar 

manner. 

f i e l d  E, t h e  magnetic f i e l d  i, and t h e  current  density 3, these may 

After having thus  obtained expressions fo r  t h e  electric 

be subs t i tu ted  i n t o  M a x w e l l ' s  equations: - 
and 

20J. C. Slater, Microwave Electronics ,  (D. Van Nostrand, Princeton, 
N. J., 1950), Ch. 4 

10 



I n  the-abopesxpiucuion, 5 1s t h e  polarizatfcnr currsnt. dens i ty .  

The c u r l s  in the above equatiobs ~ t y l  expanded in terms of t h e  

orthogonal f m c t b n  I n  a manner similar t o  the above. 

volume in tegra l8  over t he  cavity vaolume and some of these may be 

transformed i n t o  a surface in tegra l  by using a combination of vector 

i d e n t i t i e s  and the divergence theorem. 

equatians leads to the following expreesion in terms of t he  ex- 

pansion coef f lc len te  of the  electric f i e l d  aodes: 

Thle lnvolvea 

Subst i tut ion ia t h e  above 

- 
I n  t h e  above equation, En and E are the  solenoidal functions n 

used t o  expand t h e i r  corresponding fW& as described above; k is n 
identiltled as the propagation constant of the nth mode of these 

f i e l d s ;  and t he  in t eg ra l s  are ever the cavi ty  volume and surface. S 
* 

demotes the 8urface of any inputs and S denotes the  remaining sur- 

face area of the  c a v i t y  walls. This equation forms the basis of any 

11 

fu r the r  treatment of resonant cav i t i e s  in general. 
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. .  W e  now wish to  extend t h e  discussion t o  t h e  case of a bimodal 

cavi ty  i n  p a r t i c u l a r .  Literature on t h i s  is r a the r  sparse, although 

22 s o m e  discussion may be found in Berk and Lax2' and P o r t i s  and Teaney. 

The latter gave some theory based on an equivalent circuit of t he  

resonant c a v i t y  system. Althougb the re  are several equivalent ways 

of looking a t  t h e  problem, for our purposes t he  bimodal cavi ty  seems 

t o  be most conveniently discussed i n  t h e  following manner: 

S t a r t i n g  with equation (13) above, w e  f i r s t  note  tha t  t h i s  

is j u s t  t h e  d i f f e r e n t i a l  equation describing t h e  harmonic oscillator. 

The bimodal cavity operates  i n  a m o d e ,  such as the  TElll, which i s  

doubly degenerate, i .e.,  one that may oscillate, in t h e  absence of a 

complex medium, i n  two independent, orthogoaal m o d e s .  If  t he  m o d e s  

are not too  strongly pertubed by t h e  presence of t h e  plasma, one 

may expand t h e  electric f i e l d  of such a cavi ty  mode i n  terms of these 

two modes alone or . 

(14) 

whereE&nd e r e  t h e  e l e c t r i c  f i e l d  components of each normal 

mode, and<and #? are t h e i r  corresponding amplitudes depending on 

t h e  degree of exc i t a t ion  of each mode. 

21A. D. Berk and B. Lax, IRE Convention Record, Par t  10, p. 65, 
1953. (See also p. 70) .  

b 

22A. P o r t i s  and D. Teaney, J. -1ppl. Phys. 29, 1692 (1958). 
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l e  are in te res ted  i n  a transmission-type bimodal cavity in which, with 

no magnetic f i e l d  present ,  the input is coupled only t o  one mode, s a y  

t h e  lamode, and t he  output is coupled only t o  t h e  LJJmode. 

AS mentioned previously, a magnetic f i e l d  applied t o  a plasma 

renders i t  anisotropic ,  so that  it is characterized by a dielectric 

tensor or  a conductivity tensor. 

expressed i n  terms of t h e  e l e c t r i c  f i e l d  as 

Thus the current density may be 

(15) 

where the  conductivity tensor is obtained from the expression f o r  

t h e  dielectric tensor given by equation (I) using the r e l a t ion  

where (Z) is  the  unit  t ense r ,  Thus 

where 

i e, 



’ 

and 

14 

Returning to equatlon (131, we now subst i tute  equation (15) for 

3, and equation (14) for E. 

w e  have for n =% 
Using the  orthonormality of the t w o  modes, 

where C is a constant depending on the  geometry of the cavity and on 

the  plasma volume, and S 

A similar expression is obtained for n = p ,. 

1 
‘ 9  

corresponds to the surface of the input. 
1 

(22) 
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t 

where s 

Also 

corresponds t o  t h e  surface of t h e  output. 2 

(23) 

Thus for a doubly degenerate mode t he re  are two equations,  one 

The amplitudes of t hese  s a t i s f y  harmonic for  each of the modes. 

oscillator equations. In  addi t ion ,  equations (21) and (22) are 

coupled, so that w e  have the standard problem of a p a i r  of coupled 

harmonic oscillators, each osc i l  lator represent ing one of t h e  normal 

modes of t h e  f i e l d .  

The  problem is then t o  f ind t h e  power coupled t o  t h e  outFut i n  

t e r m s  of t h e  known power dr iving t h e  input.  Since the  output is con- 

nected t o  a passive load impedence of fixed value in our case, and w e  

are in t e re s t ed  only i n  t h e  power reaching t h e  output transmission l i n e ,  

one may regard t h e  driwing term of t h e  output mode a8 e f fec t ive ly  zero, 

lumping t h e  termination in t h e  p rope r t i e s  of t h e  modes. 

equation governing t h e  output mode may be regarded as having no 

d r iv ing  force. 

s inusoida l  dr iv ing  f i e l d  then may be reduced i n  t h e  standard way to 

t h e  algebraic equations: 

Then t h e  

The steady-state so lu t ion  of these equations f o r  a 



.. 
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where F is t h e  dr iv ing  force  from t h e  input on thedmode, and the 

A-matrix represents  t he  coef f ic ien ts  OCA and B. 
components of t h e  A-matrix are proportional t o  t h e  corresponding 

components of t h e  conduc t iv i ty  tensor, so t h a t  nf2 = - A 

t h e  determinant of t h i s  non-singular matrix D: 

The off  -diagonal 

C a l  Ling 21 ' 

and solving equation (24) for in terms of F, w e  have 

- =  _I_ 

,E D 
(26) 

T h i s  is proportional t o  t h e  r a t i o  of t h e  amplitudes of t he  dr iv ing  

f i e l d  t o  t h e  output signal. Since w e  measure power, w e  desire an 

equation giving the  output power i n  terms of t h e  input p o w e r .  T h i s  

quant i ty  is proportional t o  t h e  absolute  square of the  above 

quan t i t i e s ,  so t h a t  

Now t h e  determinant D i s  t h e  same determinant occurring i n  t h e  

secular equation i n  t h e  homogeneous case (no dr iv ing  fo rces ) ,  from 

which it is known that a nont r iv ia l  so lu t ion  e x i s t s  i f  and only i f  t he  

determinant t a n i a e s .  Its roots  are t h e  complex frequencies of t he  

f r e e  modes of vibration. Thus the determinant may be wri t ten  as a 

product of factors i n  these roots ,  times a constant. 



For t w o  modes, D is quadratic iny:so 

where(Ltand%are the complex resonant frequencies of t he  two 

normal modes of our cawity , corresponding to  the  dand modes 

reap-tively, and 0 le some constant. 

As described later, i n  t h e  experiment the procedure is t o  tune 

the signal f requency6)to the frenquency of t he  resonant m o d e s  (which 

have been made equal), b u t  it is important t o  note  here that 4 I s  then 

equal t o  only the  real parts of the complex frequencies of t he  cavi ty  

m o d e s .  Writing these complex frequencies as 

and 

where the  imaginary p a r t s  are small compared t o  t h e  real parts, and 

taking i n t o  account t h a t  in our case we have set w =qt= d !  
equation (28) for D becmes 

Now the imaginary parts of the frequencies are inversely pro- 

port ional  to  the Q's of t h e  corresponding cavi ty  m o d e s .  

a123 have deriwed express ims  for the  change i n  le for the  degenerate 

Buchsbalrm et 

TElll mode, and the  fracticmal change is small. In equation (31) the  

17 

change in~"mdL/ l rYs  thus small, 80 that their  product may be 

considered constant. 
/ 

23S. BuChsbgue, I,. Mower, and S. C.  Brown, Phya. Fluids  - 3, 1 (1960). 
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Thus w e  see that for B fixed signal frequency, t h a  absolute square of 

I) may he considered constant. 

The absolute square of A I s  12 

Lumping the constants i n  equations <27) ,  (31) , and (32) in K, w e  have 

f iMl'Ly , 

A This  is t h e  desired r e s u h ,  showing e x p l i c i t i y  t h e  funct ional  dependence 

of t he  power coupled to t h e  output i n  terms of t he  parameters of the 

magnetized plasma. 

I t  is seen that the r e s u l t ,  equation (33), is a resonance-type 

expreseion. If  one takes t h e  derivative of t h i s  equation and equates 

it t o  zero, t he  maxlmuca of t h i s  resonance curve  is found t o  occur, not 

It is also noted that the output power I s  proportional t o  the square 

of t he  e lec t ron  d e n s i t y .  
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The theoretical  curves obtained fram equation (33) for a given 

s ignal  frequency and plasma frequency are shown i n  Figure  1. 

term i n  brackets (which depends on the f i e l d )  is plotted against 

magnetic f i e l d  atreneh for various c o l l i s i o n  frequencies. It is 

seen that the resul t ing  curwes are very sensitive to t b  CoIlision fre-  

quency, the resonance peak occurring almost at 

low collision frequencies and being qui te  large and sharp. AS the 

c o l l i s i o n  frequency increases ,  the peaks shift to  the right (as ex- 

pected from equation (34) ) and become smeared out and smaller. 

The 

'4' = w for very 
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A. Experimental Arrangement 

A block diagram of the experimental arrangement is shown i n  

Figure 2, 

Transi t ion TS-403Bhl s igna l  generator (pulse)  modulated a t  1000 

As indicated i n  the  f igure ,  t h e  cavi ty  w a s  driven by a 

cycles. The Input line was a coaxial  cable connected to  a BNC 

coaxial  connector on the cavity;  t he  connector w a s  terminated by a 

shor t  probe antenna, The output  l i n e  w a s  connected to a similar 

antenna at right angles t o  the  input antenna, both of them located 

i n  t h e  mid-plane of t h e  cavity. The output s igna l  w a s  detected by a 

c r y s t a l  detector mount 
* 

connected to  t h e  output antenna by means of 

a BNC connector. The resu l t ing  1000 c y c l e  signal w a s  then amplified 

and detected by a Hewlett-Packard Model 41% SWR detector .  T h i s  

s igna l  was then fed i n t o  t h e  Y-input of a Moseley Model 135 X-Y 

Recorder. The X-input could  e i the r  be operated by an i n t e rna l ,  

ca l ibra ted  time sweep, or by an Empire Model 900 Hall-effect Gauss- 

meter, 

was r e c t i f i e d  by a IN34A shunted across the  recorder terminals,  

In t h e  latter case the 3000 cycle signal from t h e  output 3ack 

* 
Part of Western E lec t r i c  D-152393 (BO-20600) Standing Wave 

detector, modified t o  use mc connectors. 

21 
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TBaEPt 
The cavity w a e  mounted coaxially w i t h  an air-core rnagnst which 

w a s  constructed of t w o  large coils mounted i n  a Helmholtz-pair con- 

f igura t ion  (see Figure 3). The magnet coils w e r e  obtained f r o m  Earvey- 

Wells and were l i k e  those used on t h e i r  M o d e l  L-I28 Magnet. ?hey 

measured 12" i.d., with a rectangular cross-section measuring 7.25" 

i n  t h e  radial d i r ec t ion  and 6" across. The coils were mounted i n  an 

upright pos i t ion ,  each supported by a s tand constructed out  of 

aluminum (Figure 4). As can be seen from t h e  f igures ,  the  stands 

were placed on t racks  so that t h e i r  posi t ion could be varied. Four 

spacers constructed as jack screws separated the  two coils, and pro- 

vided a continuous adjustment of the  coil separation. A 1/2" aluminum 

p l a t e  with an eye  in it could be inser ted  where the band surrounding 

the c o i l s  comes up i n t o  an eye, thus  providing a means for Lif t ing  

the  c o i l s  sa fe ly  with a crane. Brass and aluminum construction was 

used throughout. 

Power w a s  suppl ied  to  t h e  c o i l s  by a Harvey-Wells Model HS-1050 

magnet power supply, which has a current  range of 0-50 DC amperes. 

Special  connections f o r  t h e  c o i l s  were constructed of 3/8" i.d. 

copper tubing with heavy-duty, insulated welding cable inside.  T h i s  

provided a coaxial  l i n e  t o  reduce d i s t o r t i o n  of t h e  magnetic f i e ld  

of t he  air-core magnet by the  f i e ld  produced by external current-  

ca r ry ing  conductors. The coils w e r e  connected i n  series by copper 

connectors inside a large  witchb box which w a s  provided to permit 

switching the power supply between this magnet and another one. 



: .  '. 

/,- 

?c.. 

I 



. .  . .  

I ’  

.,... .. .. ,w .... .. 



. .  26 

The current-adjuet control on t h e  p o w e r  supply w a s  driven by a 

4 RPhs Holtzer-Cabot Motor. The motor w a s  mounted i n  a 3" x 4" x 6" 

aluminum box and the  box mounted on t h e  panel ever t h e  control  knob 

shaf t .  ?he shafts were connected by a short  piece of Tygon tubing 

which f i t  snugly for non-slip turning,  but which would give if the  

end point were reached before the  motor w a s  turned of f .  ?he box con- 

ta ined  a power plug,. a s t a r t i n g  capaci tor ,  an on-off switch,  and a 

forward-reverse switch. The control required 10 tu rns  f o r  t h e  complete 

range of 0-50 amps, so with t h i s  arrangement t h e  current could  be 

swept continuously i n  e i t h e r  d i rec t ion  i n  a period of 2.5 minutes. 

Since the  magnet has an air-core, hysteresis is negl ig ib le  and t h e  

f i e l d  follows the  current  nicely. 

In the  experiment, t h e  adjustable  spacers were set to give a 

separation of 6" between t h e  ins ide  faces  of t he  two co i l s ,  In t h i s  

pos i t ion ,  t h e  maximum f i e l d  was measured by the  gaussmeter to  be 1150 

gauss. 

showed tha t  the f i e l d  along t h e  c o i l  a x i s  should have less than s% 

r i p p l e ,  and measurements with the  gaussmeter ve r i f i ed  t h i s  r e s u l t  

n icely.  

Calculatiansa4 were made using a digi ta l  computer which 

C. The Cavity 

k diagram of the c a v i t y  is shown i n  Figure 5. The cavi ty  w a s  

bored from a so l id ,  cy l indr ica l  piece of aluminum stock 5 1/2" long 

and 6" i n  diameter. The c y l i n d r i c a l  cavity was 4,l" long by 5" i n  

diameter 

~~ ~ -~ 

241?. R. Crownfield, Jr. ( t o  be published). 
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The open end was closed by an aluminum end plate 1/2" th ick ,  fastenec! 

w i t h  four 8-32 brass screws. A 37/64'' hole  w a s  bored i n  t h e  center of 

each end to accomodate the  discharge tube. 

The input and output antennas were placed i n  t h e  mid-plane of 

t h e  cavi ty  at  r igh t  angles t o  each other.  

solder ing a 1/4" piece of #22 AWG tin-coated copper wire i n t o  t h e  

t i p  of a BNC coaxial connector, which w a s  screwed i n t o  a threaded hole 

i n  the c a v i t y  w a l l .  

ad jus t ing  screw approximately 2'' long. These served t o  tune the  t w o  

cavi ty  modes to the  same frequency. 

i n  t h e  mid-plane at 45O e i t h e r  s ide  of t he  input antenna to  a l l o w  

decoupling t h e  modes. 

locknuts . ) 

Each of these  w a s  made by 

Cpposite each antenna w a s  placed an 8-32 brass 

?wo similar screws w e r e  pleced 

( A l l  adjust ing screws w e r e  provided with brass 

D. The Discharge A p p a r a t u s  

n t o t a l  of four  neon discharge tubes were used. The f i r s t  w a s  

a s t r a i g h t  tube with electrodes i n  each end, having an overall length 

of one foot and a diameter of 13 nun. The pressure of the neon in the 

tube w a s  approximately 7.5 mm. of Iig. The other  three tubes Were 

similar, but w i t h  a length of one and a half  feet and a diameter of 

LO mm. These contained neon a t  separate pressures of 1 mm., 4 mm., and 

10 mm. of Hg., as determined by a McLeod gauge. 

one of the  tubes w a s  mounted coaxially i n  the cavi ty  as indicated a b v e ,  

with t h e  electrodes project ing out of each end. 

series with a power resistor (of su f f i c i en t  value to  give t he  desired 

current)  t o  a power source. 

For each measurement, 

I t  w a s  connected in 
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The 1 mm. tube was operated from a 2800 volt transformer and a Varlac 
. .  

while the others were operated by a IIewlett-Packard Model 711 A regu- 

lated Dc power supply. The range of the power supply w a s  0-500 V .  DC 

and 0-100 MA. DC. 



The procedure was as follows: Wlith t h e  discharge tube placed 

i n  the c a v i t y ,  art if icial  coupling between the input and output of 

t h e  cavi ty  was introduced by means of the cwpl ing  sicrep~e, SD that 

t h e  output signal would be small but large enough to detect eas i ly .  

The signal generator w a s  then tuned through t h e  frequency range f o r  

which the cavi ty  was c a l c u l a t e d  t o  be resonant f o r  t he  TE mode. 
111 

The resonant frequency would not be exact ly  that calculated for t h e  

empty, i d e a l  c a v i t y ,  s ince Introduction of a dielectric such as the  

neon tube alter8 the  resonant frequency. 

found when t h e  meter on t h e  output-signal amplif ier  suddenly indicated 

an output signal. The discharge w a s  then turned on to  a c e r t a i n  value 

of discbarge current ,  which again produced a small shift i n  resrlrant 

frequency. The discbarge also had t h e  effect of destroying the  micro- 

wave f i e l d  i n  t h e  cav i ty  somewhat, so t ha t  when t h e  s igna l  generator 

was retuned t o  resonant frequency t h e  peak of t h e  output s igna l  w a s  

not as large as before. 

The resonant freqrrcllcy was 

The tuning screws were then adjusted t o  give maximum syrmsetr ical  

response to t h e  detector  as the  signal generator was tuned e i t h e r  side 

of t h e  maximum output. 

frequency. 

before. 

T h i s  served t o  tune t h e  two modes t o  tb? Same 

The coupling was then reduced and t h e  tuning rechecked as 

30 
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This  procedure was f o l l o w e d  u n t i l  a n u l l  condition was reached, i.e,, 

there w a s  no p o w e r  coupled t o  t h e  output. 

T h e  Moseley Recorder was  then zeroed properly on a standard-size 

piece of graph paper. The Y-range of t h e  recorder was set so t h e  

cavi ty  output signal would not d r i v e  the  pen off scale, and the  X-range 

e i t h e r  set on t h e  In te rna l  time s-p at 20 seconds per  inch or con- 

* nected to the gaussmeter. The recorder and t h e  magnet were then 

turned on; t h e  magnetic Zield increased l i nea r ly  with t i m e  because of 

the motor d r ive  described previously. Both recorder and magnet were 

turned off whem the maximum magnet current  of 50 amps rtas reached. A 

check of the s h i f t  i n  t he  resonant frequency of the oavi ty  at zero 

magnetic f i e l d ,  due to t h e  discharge, showed the e lec t ron  densi ty  to  

be approximately 10 t o  10 cm for the  discharge current U S R ~ .  
9 10 -3 

The i n i t i a l  runs were made w i t h  t h e  7.5 mm. pressure 2 0 3 1  ?=be 

using a discharge current  within the range of approxima<e::i 15-40 ma. 

For these runs the  X-range of the recorder was opsrated on the t i m e  

s w e e p ,  and t he  Y-range set a t  2 MV. 

50 db range. 

s igna l  was s o m e w h a t  unsteady. 

on its output. T h i s  consisted of a .5 meg r e s i s t o r  and a 1 Nf 

capacitor, t h u s  giving a half -second t i m e  constant . 
are shown i n  Figure 0 f o r  three values of the discharge c u r r e n t s  

Coupled power is plo t ted  against  magnetic field. 

hotan function of time s ince  the f i e l d  increases  l i nea r ly  wit\ tlme 

The SWR dztector  was set or. the  

Due to  imperfect functioning of the detector ,  the  output 

An RC in tegra tor  w a s  therefore  employed 

Typical r e s u l t s  

(The Latter -3.3 a 

at a known rate.) 
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The value of t he  magnetic f ie ld  could be obtained from t h e  current  

reading on the magnet power supply, s ince  the  two are d i r e c t l y  

proportional;  measurements w i t h  t h e  gaussmeter gave t h e  r e s u l t  as 23 

gauss per amp of magnet current. The electron cyclotron frequency 

can be calculated from equation ( 6 )  writ ten i n  the more convenient 

form 

33 

Cn these  runs the resonant s ignal  frequency w a s  approximately 1942 KC, 

The magnetic f i e l d  corresponding to cyclotron resonance a t  t h i s  

frequency is indicated i n  Figure 6, 

Figures 7a and 7b show recorder t rac ings  when t h e  4 mm. and 10 mm. 

pressure tubes ,  respect ively,  w e r e  used. These w e r e  taken withoct the  

in t eg ra to r ,  which allows the f luc tua t ions  from t h e  SWR dete- tcr  Co 

appear, but which also allows observation of t h e  r e l a t i v e  C ; I P L ~  I n  t h e  

nois iness  of t h e  output signal from t h e  cavi ty  as a functiodi r.S :Leld. 

For these  runs, t h e  X-range of t he  recorder w a s  operated by thc @tiss- 

meter, and w a s  ca l ibra ted  with the  u s e  of an I G O  gauss stanS3zf ?ax- 

brat ing magnet supplied with the gaussmeter.  Figure 7a w a s  taken 

with t h e  SWR detector set on 50 db and the  Y-range set on 20 MV. 

Figure 7b w a s  similar but with t h e  Y-range set on 2MV. 

frequency for both of these runs =as 1986 MC, and cyclotron resonance 

as marked on t h e  figures.  

The renor-r-lnt 

A recorder t rac ing  of t h e  l o w  pressure (1 mm,) t u b e  €3 ;f;..wn 

i n  Figure 7c. n s  above, no Integrator w a s  used, but the  SW? .fc.tector 

w a s  set on t h e  40 db (less sensitive) range. 
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The Y-range  w a s  set on 1 MV. and the X-range was operated by the 

t i m e  sweep as was used on the f i r s t  tube. Resonant frequency w a s  

1970 MC, and cyclotron resonance is  marked i n  the  figure. Additional 

runs could not be made with this tube because of the manner i n  which 

its characterist ics  changed i n  operation. 

A cal ibration test of the receioing system indicated that it is 

approximately square l a w  as expected, except for recorder de f l ec t ions  

of less than perhaps 1/4 Inch. 



V 1  EXPEPINLE’HTAL RESULTS AND CCNCLUSICNS 

The data given i n  t h e  previous sect ion seems to bear ou t  the  

theory as presented i n  section XI, For a given gas pressure (and 

hence c o l l i s i o n  frequency) the  output power w a s  approximately pro- 

port ional  to the  square of the discharge current  (or  N ), as seen 

from Figure 6. 

2 

The most e t r ik ing  feature is t h e  s t rong dependence 

of the resonance curve on the e f f ec t ive  c o l l i s i o n  frequency, both 

experimentally and theoret ical ly .  The curves shown i n  t h e  previous 

sect ion behave i n  a manner similar t o  those of Figure 1 and as w - ~ c l d  

be expected from equation (34). AS seen i n  Figures  7a-c, thr .t.-:~iance 

peak is smeared out and t o  the r i g h t  for higher pressures,  % ‘ v t y . :  :*ci the 

pressure becomes lower, t h e  resonance becomes s t ronger ,  a n i  :’*-s.d: -’, and 

s h i f t s  to the left  towards the  magnetic f ie ld  mrrespondinq + ::zlo- 

t ron  resonance. The curve for the  1 m. tube shown i n  F l g ~ ?  ;- S ~ C T S  

a n ice  sharp resonance peak j u s t  t o  t he  r i g h t  of cyclotron re5~::8nce. 

Although the  above figures seem t o  show the expected dependence 

on c o l l l s l o n  frequency relative to  each other ,  t he  e f f ec t ive  csi.’lfr,ion 

frequencies seem to  be somewhat higher than would be expected 7 1 - z ~  

t h e i r  pressures. 

a pressure of 4 mm., one can estimate t h e  normalized coi7 4 ‘- *: . “  frs- 

quency t o  be approximately 

using momentum t r ans fe r  co l l i s ion  cross-s?I; t.. >:I= md 

25 

v = 6.0 6 8 

25,T. E t t e r  and L. Goldstein, U. of I l l i n o i s  E. R. R s s .  Tech. Rept, 
No. - 3, Contract No. &19(604)-525, p. 59, 1954 (ASTIA No. AD5359G). 
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However, comparison of the curve of the 4 am. pressure tube shown i n  

Figure 7a with Figure I-,  a value of  slightly above 0.35 would be 

inferred.  The 

reason f o r  t h i s  discrepancy is not now understood and w i l l  be in- 

vest igated fur ther .  

3 In fact, equation (34) gives a value o f==  0.566. 

Because sealed-off tubes were used, t h e i r  characteristics were 

not very stable w i t h  continued operation, making it d i f f i c u l t  t o  

repeat runs. This was especial ly  t r u e  for low pressure tubes.  I t  w a s  

also found that the  apparent co l l i s ion  frequency of ten  increased fo r  

low discharge currents.  For h i g h  discharge cur ren ts  (of the order of 

50 ma.)  it w a s  not possible  t o  take meaningful and reproducible data. 

(Possibly due t o  the changing characteristics of the t u b s  during 

operation). 

Small bumps I n  the curve i n  t h e  v i c i n i t y  of harmonics of cyclotron 

resonance were sometimes observed, similar t o  absorption and rad ia t ion  

harmonies recent ly  reported by Bekefi, et a1.26 

d i s t i n c t  o r  reproducible enough t o  be very convincing. 

t h a t  the output  s ignal  becomes noisy i n  t h e  v i c i n i t y  of cyclotron 

resonance and beyond. 

However, t h e y  were not 

I t  may be noted 

The invest igat ion described herein is not complete i n  that it 

I t  w a s  proposed t o  raised some questions as w e l l  as answered some. 

see If the bimodal-cavity technique provided a useful  m e ~ s  for studying 

plasmas, and it is fe l t  t h a t  t h i s  has been shown. 

G. Bekefi, J. Coccoli, E. IIOdPe1', Jr., and S. Buchsbaurs, Phys. 26 

Rev. Letters E, 6( 1962) . 
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I t  w a s  possible  t o  explain and observe Faraday Rotation i n  a magnetized 

plasma using t h i s  system. 

i o  the collision frequency of the plasma, In view of the  s t rong 

dependence on co l l i s ion  frequency of t h e  curves obtained, it i s  sug- 

gested that t h i s  method might provide a sens i t i ve  means for determining 

experimentally an effective electron c o l l i s i o n  frequency of a plasma. 

Present r e s u l t s ,  h o w e v e r ,  ind ica te  t h a t  t h i s  effective co l l i s ion  

I t  proved t o  be qu i t e  s ens i t i ve ,  especially 

frequency does not correspond t o  t h a t  determined from t h e  electron-  

neut ra l  momentum-transfer cross-section. 

Further work is intended which will employ discharge tubes in 

w h i c h  t h e  #Ps pressure may be control led by a vacuum pump. The ranges 

of pressure and discharge current will be extended. 

t o  apply the  method to o ther  cavity modes, such as the  

new cavi ty  a t  a higher frequency, I t  is hoped that these and other  

It is also planned 

using a 

extensions w i l l  help t o  answer some of t he  questions raised, and 

possibly a l l o w  measurements on cyclotron harmonics. 



VI. a"ubadARY 

A survey of t h e  background of t he  Faraday Effect  and its 

measurement w a s  given i n  order to afford a basic understanding of t h e  

problem. I t  w a s  noted that previous measurements were done using t h e  

propagation method. U s e  of microwave c a v i t i e s  to s tudy  plasmas, and 

In  pa r t i cu la r  a bimodal cavity t o  make spin resonance measurements, 

w a s  c i ted.  

be employed t o  study the Faraday E f f e c t  i n  magnetoplasmas. 

I t  w a s  then proposed that t h e  bimodal cavi ty  technique 

Theory w a s  presented which I s  based on the  in te rpre ta t ion  of 

the  Faraday Effect  i n  terms of a coupling between degenerate 

orthogonal modes of a cyl indr ica l  cavi ty  containing a plasma i n  a 

magnetic f i e l d .  T h i s  showed that the output signal was a resonance 

curve strongly affected by the co l l i s ion  frequency and also affected 

by t h e  electron density of the plasma. 

?he experimental arrangement, discharge apparatus,  the  con- 

s t ruc t ion  of t h e  air-core magnet, and the bimodal cav i ty ,  were 

described. 

Resul ts  were then presented which showed good q u a l i t a t i v e  

agrement  w i t h  t h e  theory. The resonance curves obtained were smeared 

out  t o  t h e  right f o r  higher pressures, while for lower pressures the 

resonance peak b e c o m e s  s t rong,  sharp, and approaches cyclotron reson- 

ance as a l imi t ing  value.  

41 
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The e f f e c t i v e  co l l i s ion  frequency thus  affects both the  shape and 

magnitude of t he  resonance curves. 

increase as t h e  e lectron density was increased. 

Bamonics of cyclotron resonance were not observed in t h e  pressure 

The output power was observed t o  

and discharge current  ranges studied, but  it is planned t o  extend these 

ranges to  study the  poss ib i l i t y  of the observation of cyclotron reson- 

ance harmonica, 
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